MODULAR THINKING FOR A SUSTAINABLE FUTURE

THE CLIMACOOL CONTRIBUTION TO DECARBONIZATION AND FLEXIBILITY IN HVAC SYSTEMS

YOUR PRESENTER

MICHAEL MEDLOCK

Decarbonization Guru

Modular Chiller/Heater Systems

Water-Source Heat Pump Solutions

Hydronic Fan Coil Solutions

Custom Air Handlers

What Are Modular Chillers?

Modular Chiller's Role in Sustainability

Applications of Modular Chillers

MODULAR CHILLERS

Designed to be banked together

- •Controls supports up to 12 modules
- Single Point power available
- •Skidding available
- Up to 8-inch pipe which allows to about 600 tons per bank

Limitations	
Hot Water production	70° – 140° F
Chilled Water production	15° – 65° F
Ambient Operation	0°–120° F

MARKET EVOLUTION

- Retrofit cooling
- New construction heating

BENEFITS

Redundancy

- Mechanically
- ✓ Controls

Multifunctionality

Single plant solutionsHybrid systems

MODULAR CHILLERS

MODULAR CHILLERS

MARKET EVOLUTION

- Retrofit cooling
- New construction heating

BENEFITS

Redundancy

- ✓ Mechanically
- ✓ Controls

MULTIFUNCTIONALITY

✓ Single plant solutions✓ Hybrid systems

* Simplified single line water circuit shown; V=motorized isolation and control valve

MODULAR CHILLERS

ClimaCool solutions

All Electric

High Efficiencies

Hydronic distribution systems

- \checkmark Centralized heating and cooling solution
- ✓ High capacity per square foot
- ✓ Low charge per circuit

What Are Modular Chillers

Modular Chiller's Role in Sustainability

- Decarbonization / Electrification
- A2L Refrigerants
- Geothermal

Applications of Modular Chillers

DECARBONIZATIONS

Decarbonization' tends to refer to the process of reducing 'carbon intensity', lowering the amount of greenhouse gas emissions produced by the burning of fossil fuels. Generally, this involves decreasing CO2 output per unit of electricity generated.

Increasing Electrification

• From boilers to compression systems

Improving efficiencies

· From air source to water source

DECARBONIZATION

CLIMATE CHANGE

FOSSIL FUEL CONSUMPTION

POLITICAL WILL

- Local gas bans and electrification codes
- Bans on Bans

SOCIETAL WILL

 1/3 of fortune 500 companies have formal sustainability goals

THE CLIMATE TARGETS

RENEWABLE 100% (RE100)

Achieved when a company relies

n 100% renewable energy

SCIENCE BASED TARGETS (SBT

Emissions are reduced in line with

the need to keep global warming below 2 degrees Celsius.

OF FORTUNE 500 COMPANIES

Achieved when a company complete

offsets its greenhouse gas emissior

CLIMATE TARGET TYPE

Fortune Global 500 companies with formal climate targets²: **163**

Countries represented

States advancing or prohibiting building gas bans and electrification codes

Decarbonize - reduce carbon emissions (CO₂)

Greenhouse gases (GHGs)

- Carbon Dioxide (CO₂) & Fluorinated Gases
- Methane, Nitrous Oxide

Commercial, residential, and industrial buildings represent 40+% of the world's energy consumption & GHG emissions

We are shifting HVAC from CO2 to fluorinated gases so its important to also look at the impact of fluorinated gases

Overview of U.S. Greenhouse Gas Emissions in 2019

How are they similar?

- A1 & A2L are nontoxic.
 - A1 410A R-32 / R125
 - A2L 454B R-32 / R1234yf
 - A2L R-32

How are they different?

A1

✓ does not show flame at test condition

A2L

- ✓ Ignitable
- ✓ Low flame speed and low heat of combustion
- ✓ Lower GWP

ASHRAE 34 and ISO 817 Refrigerant Classification

(S _u & HOC)	Higher Flammability	A3	B3
lammability	Lower Flammability	A2	B2
Ising F	1	A2L	B2L
Increa	No Flame Propagation	A1	B1
		Lower Toxicity	Higher Toxicity
	Increasing Toxicity		

Class 3 Requirements 1. Exhibit flame propagation @ 60°C & 101.3 kPa 2. LFL ≤ 0.10 kg/m³ or HOC ≥ 19,000 kJ/kg	R-290 Propane
Class 2 Requirements 1. Exhibit flame propagation @ 60°C & 101.3 kPa 2. LFL > 0.10 kg/m ³ 3. HOC < 19,000 kJ/kg	R-152a (hairspray, dust-off)
<u>Class 2L Requirements</u> 1. Same as Class 2 requirements & S _u ≤ 10 cm/s	R-32, R-454A etc.
<u>Class 1 Requirements</u> 1. No flame propagation @ 60°C & 101.3 kPa	R-410A

© AHRI 2021, Subject to Terms of Use

DECARBONIZATIONS

Decarbonization' tends to refer to the process of reducing 'carbon intensity', lowering the amount of greenhouse gas emissions produced by the burning of fossil fuels. Generally, this involves decreasing CO2 output per unit of electricity generated.

Increasing Electrification

• From boilers to compression systems

Improving efficiencies

· From air source to water source

ClimaCool solutions

All Electric

High Efficiencies

Hydronic distribution systems

- \checkmark Centralized heating and cooling solution
- ✓ High capacity per square foot
- ✓ Low charge per circuit

What Are Modular Chillers

Modular Chiller's Role in Sustainability

Applications of Modular Chillers

- Cooling
- Heating
- Heat Recovery
- Single plant solution
- Condenser Loop Conditioning

SYSTEM EXAMPLE

COOLING

WATER SOURCE EQUIPMENT

✓ Replacement equipment

- ClimaCool supports constant volume replacements
- ✓ Critical loads (redundancy)

Boiler

HEATING

WATER SOURCE EQUIPMENT

• Replace Boiler with Air Source heat pump

DESIGN CONSIDERATIONS

- Outdoor ambient
 - Compressor technology
 - Capacity Derates
- Defrost derates

MULTIFUNCTIONALITY

HEATING FOCUSED

- Replace Boiler with Air Source heat pump
- Downsize chiller by heat pump capacity
- Use heat pump as swing or chiller / heat recovery chiller

COOLING FOCUSED

- Replaced chiller/ tower with ASHP
- Get as much heating as possible – switch over to boiler solution
 - Should cover 95% of the design days
 - Keeps cost and footprint minimal

SINGLE PLANT SOLUTION

ClimaCool

- ✓ Single equipment integration for heating and cooling
- ✓ All electric solution
- ✓ High Efficiencies
- ✓ Dual Redundancy

AIR SOURCE

✓ 300 tons

WATER SOURCE

 ✓ 2500 tons (driven by the heating load)

Building Load

CONDENSER LOOP CONDITIONING

n n 20-(f) (f) (a)-WATER SOURCE HEAT PUMPS WITH BOILER / TOWER 006 thru 015 006 thru 015 006 thru 015 **Cooling Tower** 009 thru 036 📛 R 006 thru 120 006 thru 300 Boiler

Building Load

CONDENSER LOOP CONDITIONING

ClimaCool Solution

Replace boiler with ASHP

✓ Decarbonization

Replace Tower with ASHP

- ✓ Water conservation
- ✓ Closed loop / lower maintenance

ASHP

- \checkmark Operating limits 0 to 120 ambient
- ✓ Controls do not require a BAS
 - ASHP standard mode conditions loop temps
 - WSHP can be controlled by thermostats

Building Load

ClimaCool Expertise

Collaborate with ClimaCool for your next project and explore the details that make projects successful.

System pumping
System Bypass
System Volume
Multiple bank installations
Controls integration
Hybrid systems integration
Project examples

